
What is a positive geometry?

1 Polynomial Equalities and Inequalities

In what follows, take k to be an algebraically-closed field and d > 0 be a positive integer.

1. A subset Y of kd is algebraic if there exist polynomials S ⊆ k[x1, . . . ,xn] such that

Y = {y ∈ kd | f(y) = 0 for all f ∈ S} .

By contrast, Y is a (closed) semialgebraic set if there exist polynomials S,T ⊆ k[x1, . . . ,xn]
such that

Y = {y ∈ kd | f(y) = 0 for all f ∈ S} ∪ {y ∈ kd | f(y) ≥ 0 for all f ∈ T} .

2. Consider the space kd and for each x, y ∈ (kd \ {0}) say

x ∼ y ⇔ x = λy for some λ ∈ k \ {0} .

This defines an equivalence relation on kd and we call kPd−1 = (kd \ {0})/ ∼ the projective
space of dimension d−1. Here’s a quick explanation of why we use d−1: choose represenatives
of each equivalence class whose norm is 1, so that knowing d−1 coordinates uniquely determines
that dth. This means that our projective space only depends on d− 1 coordinates.

3. Let S be a collection of homogeneous 1 polynomials in k[z1, . . . , zd]. The zero set of S is an
projective variety. That is

Z(S) = {x ∈ Pd−1 | f(x) = 0 for all f ∈ S} .

If Z(S) cannot be described as a union of two algebraic varieties in a nontrivial way, then
it is a irreducible projective variety. There is a more general object, called an algebraic
variety. Positive geometries are defined for algebraic varieties, but our examples will all be
projective, so we will restrict to that setting.

4. Given a projective variety X defined over k, let k′ ⊆ k be a subfield of k. If X is defined by
polynomials S whose coefficients lie in k′, then we can define

X(k′) = {x ∈ X | the coordinates of x are in k′} .

We will be interested in the setting where k = C and k′ = R.

(a) Let k be a field containing R and suppose that X can be described as the vanishing set
of S ⊆ R[x1, . . . ,xd].

(b) Let S,T ⊆ R[x1, . . . ,xn]. The (closed) projective semialgebraic set defined by S
and T is the collection of ∼ equivalence classes x̃ such that there exists x ∈ x̃ such that
x is in the (closed) semialgebraic set defined by S and T .

1Homogenaity is important! If we want to evaluate f on points of (kd\{0})/ ∼, we don’t want the vanishing to depend
on our specific equivalence class representative. If f is homogeneous of degree `, then f(λz1, . . . ,λzd) = λ`f(z1, . . . , zd).
This also illustrates why we care about where f is zero, instead of f evaluating to some other number: if f(z1, . . . , zd)
is nonzero, then that nonzero number depends on our represenative!

1



Example 1. Let X = CP2, X(R) = RP2, and X≥0 be the projective semialgebraic defined
by x1 ≥ 0. We claim that X≥0 = X(R). To see this take any y = (y1 : y2 : y3) ∈ X(R).

• If y1 6= 0, then y ∼ 1
y1
y has first coordinate 1.

• On the other hand, if y1 = 0, then y ∈ X≥0 directly.

Example 2. Let X = CP2, X(R) = RP2, and X≥0 be the projective semialgebraic
defined by x1 − 1 ≥ 0. Take any y = (y1 : y2 : y3) ∈ X(R).

• If y1 6= 0, then y ∼ 2
y1
y has first coordinate 2.

• On the other hand, if y1 = 0, then there is no λ for which λy has first coordinate
nonzero.

Then X≥0 is the collection of points with y1 6= 0.

Example 3. Let X = CP2 and X(R) = RP2. Let X≥0 be the projective semialgebraic
defined by

x1 − 1 = 0

x2 ≥ 0

x3 ≥ 0

−3x2 + x3 + 3 ≥ 0

2x2 − x3 + 1 ≥ 0

We check that (1 : 1 : 1) satisfies all of these equations. The first three are trivial. For
the last two, we have

−3(1) + (1) + 3 = 1 ≥ 0

2(1)− (1) + 1 = 2 ≥ 0 .

Note that (−1 : −1 : −1) also satisfies these inequalities, since (−1 : −1 : −1) ∼ (1 : 1 : 1).

5. A subset X of kPd−1 is Zariski closed if there exist homogeneous polynomials S ⊆
k[x1, . . . ,xn] such that

X = {x ∈ kPd−1 | f(x) = 0 for all f ∈ S} .

Example 4. The set of x ∈ CP2 with (x1− 1)(x2− 1) = 0 and x1x2 +x23 = 0 is Zariski closed.
This contains (1 : −9 : 3) and (−8 : 1 : 2).

Example 5. Let v(1), v(2), . . . , v(m) ∈ Rd. The (real) convex hull of these points is

convR(v(1), v(2), . . . , v(m)) =

{
m∑
i=1

λi v
(i) ∈ Rd | λi ≥ 0 for i = 1, . . . ,m, and

∑
λi = 1

}
.

A Euclidean convex polytope is a subset of Rd which can be realized as the convex hull of
finitely-many points. To obtain a projective convex polytope2 from a Euclidean one, prepend a
1 to each coordinate and considering the corresponding equivalence classes in RPd. For example,
consider the polygon with vertices (1, 0), (0, 1), (0, 0), and (2, 3). The vertices of its projectivization
are (1 : 1 : 0), (1 : 0 : 1), (1 : 0 : 0), and (1 : 2 : 3) (imagine embedding the polytope at height one in
one dimension higher, then considering all lines through that embedded polytope). We can check
that (1, 1) is inside the original polytope. For the projective version, we also have

(1 : 2 : 3) + (1 : 0 : 1) + 2 · (1 : 1 : 0) = (4 : 4 : 4) ∼ (1 : 1 : 1) .
2Projective polytopes are more general than this. We’ll hear more about this later in the quarter!
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Non-example 6 (From Nick Addington). Let X = C2 (this is technically an affine variety, but I
hope the example is still helpful!). Then X(R) = R2. A semialgebraic subset of R2 is the set of
solutions to −(y2 + x2 + x3) ≥ 0. Here is a picture (created in Desmos):

It’s a bit hard to see in the picture, but it is the shaded region, together with the origin. The interior
is the shaded region minus its boundary. The closure does not contain the origin, so taking the strict
inequality defines and (open) semialgebraic set X>0 whose closure is not the closed semialgebraic
set defined by those same inequalities.

2 Differentials

Here, let f be a complex function such that f or 1
f is differentiable at every point in our domain

(“meromorphic”).

1. A pole of f is a value z such that 1
f(z) = 0. A pole z0 is simple if there is an integer n such

that (z − z0)nf(z) is differentiable and nonzero near z0.

Example 7. The function f(z) = 1
(3−z)2 has a simple pole at 3 of order 2.

2. Now let ω be a differential form with simple pole z = 0 (we might want to do a change of
variables to get this like (z − c)n 7→ z). Then we can write ω as a sum of: the part where
z = 0 is a pole (of order 1) plus the part were z = 0 is not a pole. That is, if ω is a differential
form in the variables z,x1,x2, . . . ,xm, their dxi’s, and dz, then

ω(z,x1,x2, . . . ,xm) = α(z,x1,x2, . . . ,xm) ∧ dz
z

+ β(z,x1,x2, . . . ,xm) .

Since α has no pole at z = 0, we can do the Taylor expansion of α(z,x1,x2, . . . ,xm) near
z = 0. In the limit as z goes to zero, everything in this Taylor expansion goes to zero except
the things without z’s in them, so locally α looks like a form α̃(x1,x2, . . . ,xm) defined only in
terms of x1, . . . ,xm. The residue of ω(z,x1,x2, . . . ,xm) at z = 0 is α̃(x1,x2, . . . ,xm). That is

Res(ω, c) = α̃(x1,x2, . . . ,xm) .

Example 8. The differential form ω(z) = dz
(z−3) + dz

(z−4) has a simple pole at 3 of order 1.

After the change of variables (z − 3) 7→ z, we have

ω(z) = 1 ∧ dz
z

+
dz

(z − 1)
,

so that the residue at z = 0 is 1.
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Example 9. The differential form ω(x, y) = y cos(x)
(x−3) dxdy has a simple pole at 3 of order 1.

After the change of variables (x− 3) 7→ x, we have

ω(z) = y cos(x+ 3)dy ∧ dx
x

,

Expanding cos(x+ 3) near zero gives

cos(x+ 3) = cos(3)− x sin(3)− 1/2x2 cos(3) + 1/6x3 sin(3) + 1/24x4 cos(3)− · · · .

As x approaches 0, everything goes to zero except the constant term so that the residue at
z = 0 is y cos(3).

3 Positive Geometries

LetX be an irreducible complex projective variety. LetX≥0 ⊆ X(R) be a closed, semialgebraic subset
of X(R) such that the closure of the interior X>0 is the whole thing X≥0. Let ∂X≥0 = X≥0 \X>0

denote the boundary of X≥0 in X and let ∂X denote the Zariski closure of ∂X≥0.
The pair (X,X≥0) is a positive geometry if there exists a unique nonzero rational d-form

Ω(X,X≥0)–called the canonical form– on X satisfying the following recursive axioms

1. If d = 0, then X = X≥0 is a point, and we define Ω(X,X≥0) = ±1, where the sign depends
on the orientation of the point.

2. If d > 0, then

(a) Every boundary component (C,C≥0) of (X,X≥0) is a positive geometry of dimension
d− 1, and

(b) There exists a unique nonzero rational d-form Ω(X,X≥0) on X with the property that

ResCΩ(X,X≥0) = Ω(C,C≥0) .

along every boundary component C (and ther are no singularities elsewhere).

Example 10. Let a, b ∈ R with a < b. Take X to be CP2 and X≥0 the semialgebraic set defined
by “projectivizing” the interval [a, b]. That is

X≥0 = {(1 : x) | x ∈ R, a ≤ x ≤ b}

Let’s check that

Ω(X,X≥0) =
dx

(x− a)
− dx

(x− b)
is a candidate for a canonical form for (X,X≥0). Here d = 1, so we look at the second set of
conditions. The boundary components are x = a and x = b, which are both points (this is the d = 0
case, so they are positive geometries by construction). Now we need to check the recursive condition.
On the boundary component {x = a}, we have

Res{x=a}Ω(X,X≥0) = 1 .

On the boundary component {x = b}, we have

Res{x=b}Ω(X,X≥0) = −1 .

Non-example 11. Let R be the closed unit disk. Then (CP2,R) is not a positive geometry, as we
will see next week!
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